GET /api/normalPublication/?format=api&page=3
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "count": 732,
    "next": "https://api.research.service.sci.tu.ac.th/api/normalPublication/?format=api&page=4",
    "previous": "https://api.research.service.sci.tu.ac.th/api/normalPublication/?format=api&page=2",
    "results": [
        {
            "id": 20,
            "title": "On the semigroup whose elements are subgraphs of a complete graph",
            "abstract": "Let Kn be a complete graph on n vertices. Denote by SKn the set of all subgraphs of Kn. For each G, H ∈ SKn, the ring sum of G and H is a graph whose vertex set is V(G) ∪ V(H) and whose edges are that of either G or H, but not of both. Then SKn is a semigroup under the ring sum. In this paper, we study Green's relations on SKn and characterize ideals, minimal ideals, maximal ideals, and principal ideals of SKn. Moreover, maximal subsemigroups and a class of maximal congruences are investigated. Furthermore, we prescribe the natural order on SKn and consider minimal elements, maximal elements and covering elements of SKn under this order. © 2018 by the author.",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Panma S.",
                "Nupo N.",
                "Chaiya Y.",
                "Pookpienlert C."
            ],
            "keywords": [
                "maximal congruence",
                "complete graph",
                "maximal subsemigroup",
                "ideal",
                "natural order",
                "green's relations"
            ],
            "references": [
                "Khosravi, B., Ramezani, E., On the Additively Weighted Harary Index of Some Composite Graphs (2017) Mathematics, p. 5",
                "Pirzada, S., (2012) An Introduction to Graph Theory, , Universities Press: Orient Blackswan, India",
                "Naduvath, S., Augustine, G., A Study on the Nourishing Number of Graphs and Graph Powers (2015) Mathematics, 3, pp. 29-39",
                "Wang, S., Li, Y., On Cayley graphs of completely 0-simple semigroups (2013) Cent. Eur. J. Math, 11, pp. 924-930",
                "Takemura, K., Kametaka, Y., Nagai, A., A Hierarchical Structure for the Sharp Constants of Discrete Sobolev Inequalities on aWeighted Complete Graph (2018) Symmetry, 10, p. 1",
                "Abdo, H., Dimitrov, D., The Total Irregularity of Graphs Under Graph Operations (2014) Miskolc Math. Notes, 15, pp. 3-17",
                "Khosravi, B., Khosravi, B., A characterization of Cayley graphs of Brandt semigroups (2012) Bull. Malays. Math. Sci. Soc, 35, pp. 399-410",
                "Nilanjan, D., Anita, P., Abu, N., The Irregularity of Some Composite Graphs (2016) Int. J. Appl. Comput. Math, 2, pp. 411-420",
                "Howie, J.M., (1995) Fundamentals of Semigroup Theory, , Oxford University Press: New York, NY, USA",
                "Panma, S., Characterizations of Clifford semigroup digraphs (2006) Discrete Math, 306, pp. 1247-1252"
            ]
        },
        {
            "id": 21,
            "title": "A Novel Hybrid 2,4-Dichlorophenoxy Acetate Bead from Modified Cassava Starch and Sodium Alginate with Modified Natural Rubber Coating",
            "abstract": "A novel herbicide bead was developed by phase separation, utilizing modified cassava starch (CSt), sodium alginate (SA) and 2,4-dichlorophenoxy acetate (2,4 DA), and the beads were also coated with natural rubber grafted with cassava starch (NR-graft-CSt) to aid their water resistance. The alginate gel beads with 65% entrapped 2,4 DA showed 90% release within 24 h. The incorporation of CSt in the beads markedly improved their encapsulation efficiency to 98% and sustained the release of the herbicide for 700 h. The water resistance was improved by coating the beads with NR-graft-CSt when compared with the pure CSt/SA bead. The synthesized bead has excellent potential for agricultural applications. © 2017, Springer Science+Business Media, LLC.",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Riyajan S.-A."
            ],
            "keywords": [
                "reactive agent",
                "natural rubber",
                "biodegradation polymer",
                "agriculture",
                "polysaccharide",
                "cassava starch"
            ],
            "references": [
                "Zeng, Y., Wang, K., Yao, J., Wang, H., Hollow carbon beads for significant water evaporation enhancement (2014) Chem Eng Sci, 116, pp. 704-709. , COI: 1:CAS:528:DC%2BC2cXhtFykurnK",
                "Zhang, L., Jin, Y., Liu, H., Du, Y., Structure and control release of chitosan/carboxymethyl cellulose microcapsules (2001) J Appl Polym Sci, 82, pp. 584-592. , COI: 1:CAS:528:DC%2BD3MXmtFamurw%3D",
                "Bashi, A.M., Zobir Hussein, M., Zainal, Z., Tichit, D., Synthesis and controlled release properties of 2,4-dichlorophenoxy acetate–zinc layered hydroxide nanohybrid (2013) J Solid State Chem, 203, pp. 19-24. , COI: 1:CAS:528:DC%2BC3sXpsFGjsbs%3D",
                "Dong, H., Li, F., Li, J., Li, Y., Characterizations of blend gels of carboxymethylated polysaccharides and their use for the controlled release of herbicide (2012) J Macromol Sci A, 49, pp. 235-241. , COI: 1:CAS:528:DC%2BC38Xhs1Kgtr8%3D",
                "Potkonjak, B., Jovanović, J., Stanković, B., Ostojić, S., Adnadjević, B., Comparative analyses on isothermal kinetics of water evaporation and hydrogel dehydration by a novel nucleation kinetics model (2015) Chem Eng Res Des, 100, pp. 323-330. , COI: 1:CAS:528:DC%2BC2MXhtVShur7M",
                "Singh, B., Sharma, D.K., Kumar, R., Controlled release of the fungicide thiram from starch-alginate-clay based formulation (2009) Appl Clay Sci, 45, pp. 76-82. , COI: 1:CAS:528:DC%2BD1MXmvFSjs7c%3D",
                "Muthukumar, T., Aravinthan, A., Mukesh, D., Effect of environment on the degradation of starch and pro-oxidant blended polyolefins (1988) Polym Degrad Stabil, 95, pp. 1988-1993",
                "Jiang, S., Wang, Y., Sheng, D., Xu, W., Cao, G., Examination of the dyeing properties of pigment printing fabrics in a water-ethanol mixed solvent (2016) Carbohydr Polym, 153, pp. 364-370. , COI: 1:CAS:528:DC%2BC28Xhtlais7zO",
                "Magné, C., Saladin, G., Clément, C., Transient effect of the herbicide flazasulfuron on carbohydrate physiology in Vitis vinifera L (2006) Chemosphere, 62, pp. 650-657",
                "Siepmann, J., Peppas, N.A., Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) (2001) Adv Drug Deliver Rev, 48, pp. 139-157. , COI: 1:CAS:528:DC%2BD3MXjtlaqsrk%3D",
                "Tan, W., Liang, T., Li, Q., Du, Y., Zhai, H., The phenotype of grape leaves caused by acetochlor or fluoroglycofen, and effects of latter herbicide on grape leave (2014) Pestic Biochem Phys, 114, pp. 102-107. , COI: 1:CAS:528:DC%2BC2cXht1GqsLrN",
                "Wang, S., Liu, C., Wang, S., Drying methods used in starch isolation change properties of C-type chestnut (Castanea mollissima) starches (2016) LWT Food Sci Technol, 73, pp. 663-669. , COI: 1:CAS:528:DC%2BC28XhtFKmur%2FL",
                "Legrouri, A., Lakraimi, M., Barroug, A., De Roy, A., Besse, J.P., Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides (2005) Water Res, 39, pp. 3441-3448. , COI: 1:CAS:528:DC%2BD2MXpvVSlsb0%3D",
                "Kanti, P., Srigowri, K., Madhuri, J., Smitha, B., Sridhar, S., Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation (2004) Sep Purif Technol, 40, pp. 259-266. , COI: 1:CAS:528:DC%2BD2cXnvVKnu7w%3D",
                "Li, J., Li, Y., Dong, H., Controlled release of herbicide acetochlor from clay/carboxymethylcellulose gel formulations (2008) J Agr Food Chem, 56, pp. 1336-1342. , COI: 1:CAS:528:DC%2BD1cXht1OmsLY%3D",
                "Dries, D.M., Gomand, S.V., Goderis, B., Delcour, J.A., Structural and thermal transitions during the conversion from native to granular cold-water swelling maize starch (2014) Carbohydr Polym, 114, pp. 196-205. , COI: 1:CAS:528:DC%2BC2cXhtlKktbjL",
                "Raman, S.P., Gurikov, P., Smirnova, I., Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications (2015) J Supercrit Fluid, 106, pp. 23-33. , COI: 1:CAS:528:DC%2BC2MXptFGgt7Y%3D",
                "Trimnell, D., Shasha, B.S., Controlled release formulations of atrazine in starch for potential reduction of groundwater pollution (1990) J Control Release, 12, pp. 251-256. , COI: 1:CAS:528:DyaK3cXkvFehtL0%3D",
                "Garrido-Herrera, F.J., Gonzáles-Pradas, E., Fernández-Pérez, M., Controlled release of isoproturon, imidacloprid, and cyromazine from alginate-bentonite-activated carbon formulations (2006) J Agr Food Chem, 54, pp. 10053-10060. , COI: 1:CAS:528:DC%2BD28Xht12iurrE",
                "Biswas, N., Sahoo, R.K., Tapioca starch blended alginate mucoadhesive-floating beads for intragastric delivery of Metoprolol Tartrate (2016) Int J Biol Macromol, 83, pp. 61-70. , COI: 1:CAS:528:DC%2BC2MXhvFKisb3E",
                "Arockianathan, P.M., Sekar, S., Sankar, S., Kumaran, B., Sastry, T.P., Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles (2012) Carbohydr Polym, 90, pp. 717-724",
                "Jerobin, J.R., Sureshkumar, R.S., Anjali, C.H., Mukherjee, A., Chandrasekaran, N., Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A (2012) Carbohydr Polym, 90, pp. 1750-1756. , COI: 1:CAS:528:DC%2BC38XhtF2itL3L",
                "Fujiwara, G.M., Campos, R., Costa, C.K., Marques, F.A., Zanin, S.M.W., Production and characterization of alginate-starch-chitosan microparticles containing stigmasterol through the external ionic gelation technique (2013) Braz J Pharm Sci, 49, pp. 537-547. , COI: 1:CAS:528:DC%2BC2cXmt1Kmtg%3D%3D",
                "Negri, A.P., Flores, F., Mercurio, P., Mueller, J.F., Collie, C.J., Lethal and sub-lethal chronic effects of the herbicide diuron on seagrass (2015) Aquat Toxicol, 165, pp. 73-83. , COI: 1:CAS:528:DC%2BC2MXotlagu7c%3D",
                "Maataoui, M., Sallanon, H., Tolerance to clomazone herbicide is linked to the state of LHC, PQ-pool and ROS detoxification in tobacco (Nicotiana tabacum L.) (2015) J Plant Physiol, 175, pp. 122-130",
                "Gerstl, Z., Nasser, A., Mingelgrin, U., Controlled release of pesticides from clay-polymer formulations (1998) J Agr Food Chem, 46, pp. 3803-3809. , COI: 1:CAS:528:DyaK1cXls1ajsL0%3D",
                "Mahmoudi Najafi, S.H., Baghaie, M., Ashori, A., Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model (2016) Int J Biol Macromol, 87, pp. 48-54. , COI: 1:CAS:528:DC%2BC28XivFygsLY%3D",
                "Riyajan, S., Sasithornsonti, Y., Phinyocheep, P., Green natural rubber-g-modified starch for controlling urea release (2012) Carbohydr Polym, 89, pp. 251-258. , COI: 1:CAS:528:DC%2BC38XkvVGrtrg%3D",
                "Riyajan, S., Sakdapipanich, J., Development of a controlled release neem capsule with a sodium alginate matrix, crosslinked by glutaraldehyde and coated with natural rubber (2009) Polym Bull, 63, pp. 609-622. , COI: 1:CAS:528:DC%2BD1MXnvVCksrk%3D",
                "Smrdel, P., Bogataj, M., Mrhar, A., The influence of selected parameters on the size and shape of alginate beads prepared by ionotropic gelation (2008) Sci Pharm, 76, pp. 77-89. , COI: 1:CAS:528:DC%2BD1cXmsV2iurg%3D",
                "Royuela, M., Gonzalez, A., Gonzalez, E.M., Arrese-Igor, C., Aparicio-Tejo, P.M., Gonzalez-Murua, C., Physiological consequences of continuous, sublethal imazethapyr supply to pea plants (2000) J Plant Physiol, 157, pp. 345-354. , COI: 1:CAS:528:DC%2BD3cXotF2rsbk%3D"
            ]
        },
        {
            "id": 22,
            "title": "Dissipative Particle Dynamics Study of SWCNT Reinforced Natural Rubber Composite System: An Important Role of Self-Avoiding Model on Mechanical Properties",
            "abstract": "Dissipative particle dynamics (DPD) is used to predict the mechanical properties of crosslinking-polyisoprene (PI) reinforced by single-walled carbon nanotube (SWCNT). The role of the increasing concentration of SWCNT up to 8% in morphology of PI composite is investigated. The carbon nanotube (CNT) restricts the polymer movement as indicated by the reduction of mean square displacement and the end-to-end distance. The analysis of CNT bundle reveals that the CNT forms bundle of many sizes depending on its concentration. The mechanical reinforcement of the PI composites is attributed to the restricted motion of crosslinked entangled polyisoprene and to the alignment of aggregated CNT along the elongation direction. However, the DPD alone fails to account for the change in Young's modulus of the composite system as a function of the SWCNT concentration. Using the modified segmental repulsive potential (mSRP), which prevents polymeric chain crossing and enhances polymer entanglement, can address this shortcoming. The mSRP is necessary for correct description of mechanical reinforcement in a polymer composite system. To obtain quantitative agreement with the experimental modulus, the polyisoprene interaction parameter is modified from the published value by 10%. This modified parameter is found to work well for the simulation of polyisoprene composites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Tantirungrotechai Y.",
                "Ketkaew R."
            ],
            "keywords": [
                "dissipative particle dynamics",
                "nanocomposites",
                "molecular dynamics",
                "rubber",
                "mechanical properties"
            ],
            "references": [
                "Bergin, S.D., Sun, Z., Rickard, D., Streich, P.V., Hamilton, J.P., Coleman, J.N., (2009) ACS Nano, 3, p. 2340",
                "Phan-Thien, N., (2013) Understanding Viscoelasticity, p. 147. , Springer, Heidelberg, p",
                "Arash, B., Wang, Q., Varadan, V.K., (2014) Sci. Rep., 4, p. 6479",
                "Liba, O., Kauzlarić, D., Abrams, Z.R., Hanein, Y., Greiner, A., Korvink, J.G., (2008) Mol. Simul., 34, p. 737",
                "Karatrantos, A., Clarke, N., Composto, R.J., Winey, K.I., (2013) Soft Matter, 9, p. 3877",
                "Mokashi, V.V., Qian, D., Liu, Y., (2007) Compos. Sci. Technol., 67, p. 530",
                "Padding, J.T., Briels, W.J., (2001) J. Chem. Phys., 115, p. 2846",
                "Spaeth, J.R., Kevrekidis, I.G., Panagiotopoulos, A.Z., (2011) J. Chem. Phys., 135, p. 184903",
                "Karatrantos, A., Composto, R.J., Winey, K.I., Clarke, N., (2011) Macromolecules, 44, p. 9830",
                "Ju, S.-P., Wang, Y.-C., Lee, W.-J., (2013) Modeling and Prediction of Polymer Nanocomposite Properties, p. 215. , Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p",
                "Frenkel, D., Smit, B., (2001) Understanding Molecular Simulation From Algorithms to Applications, , 2nd ed., Elsevier, Academic Press, San Diego",
                "Tomasini, M.D., Tomassone, M.S., (2012) Chem. Eng. Sci., 71, p. 400",
                "Chantawansri, T.L., Sirk, T.W., Mrozeka, R., Lenhart, J.L., Kröger, M., Sliozberga, Y.R., (2014) Chem. Phys. Lett., 612, p. 157",
                "Trofimov, S.Y., Nies, E.L.F., Michels, M.A.J., (2002) J. Chem. Phys., 117, p. 9383",
                "Mark, J.E., (2009) The Polymer Data Handbook, , 2nd ed., Oxford University Press, Oxford",
                "Zhou, B., Luo, W., Yang, J., Duan, X., Wen, Y., Zhou, H., Chen, R., Shan, B., (2017) Comput. Mater. Sci., 126, p. 35",
                "Lu, T., Chen, T., Liang, H., (2008) Chin. J. Chem. Phys., 21, p. 463",
                "Frankland, S., (2003) Compos. Sci. Technol., 63, p. 1655",
                "Padding, J.T., Briels, W.J., (2002) J. Chem. Phys., 117, p. 925",
                "Thompson, A.P., Plimpton, S.J., Mattson, W., (2009) J. Chem. Phys., 131, p. 154107",
                "Nikunen, P., Vattulainen, I., Karttunen, M., (2007) Phys. Rev. E, 75, p. 36713",
                "Choi, J.-H., Jegal, J., Kim, W.-N., (2006) J. Membr. Sci., 284, p. 406",
                "Wang, Y.-C., Lee, W.-J., Ju, S.-P., (2009) J. Chem. Phys., 131, p. 124901",
                "(2017), www.rubberstudy.com, (accessed",
                "Sirk, T.W., Slizoberg, Y.R., Brennan, J.K., Lisal, M., Andzelm, J.W., (2012) J. Chem. Phys., 136, p. 134903",
                "Farhadinia, M., Arab, B., Jam, J.E., (2016) Mech. Adv. Compos. Struct., 6, p. 113",
                "Goujon, F., Malfreyt, P., Tildesley, D.J., (2008) J. Chem. Phys., 129, p. 34902",
                "Español, P., Warren, P., (1995) Europhys. Lett., 30, p. 191",
                "Cornwell, C.F., Wille, L.T., (1997) Solid State Commun., 101, p. 555",
                "Maiti, A., McGrother, S., (2004) J. Chem. Phys., 120, p. 1594",
                "Tonpheng, B., Yu, J., Andersson, B.M., Andersson, O., (2010) Macromolecules, 43, p. 7680",
                "September",
                "Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M., (2009) J. Comput. Chem., 30, p. 2157",
                "Liu, Y., Kumar, S., (2014) ACS Appl. Mater. Interfaces, 6, p. 6069",
                "Rodgers, B., (2015) Rubber Compounding: Chemistry and Applications, , 2nd ed., CRC Press, Boca Raton",
                "Español, P., Warren, P.B., (2017) J. Chem. Phys., 146, p. 150901",
                "Pagonabarraga, I., Frenkel, D., (2001) J. Chem. Phys., 115, p. 5015",
                "Kawakatsu, T., (2004) Statistical Physics of Polymers: An Introduction, , Springer-Verlag, Berlin",
                "Wang, Y.-C., Ju, S.-P., Cheng, H.-Z., Lu, J.-M., Wang, H.-H., (2010) J. Phys. Chem. C, 114, p. 3376",
                "Kumar, S., Larson, R.G., (2001) J. Chem. Phys., 114, p. 6937",
                "Uchida, T., Kumar, S., (2005) J. Appl. Polym. Sci., 98, p. 985",
                "Gavrilov, A.A., Chertovich, A.V., Khalatur, P.G., Khokhlov, A.R., (2013) Soft Matter, 9, p. 4067",
                "Kim, Y.J., (2014) presented at Proc. Soc. Eng. Sci. 51st Annu. Tech. Meet., , Purdue University, USA, October",
                "Chantawansri, T.L., Sirk, T.W., Sliozberg, Y.R., (2013) J. Chem. Phys., 138, p. 24908",
                "Plimpton, S., (1995) J. Comput. Phys., 117, p. 1",
                "Allen, M.P., Tildesley, D.J., (1989) Computer Simulation of Liquids, , Clarendon Press, Oxford",
                "Chakraborty, S., Choudhury, C.K., Roy, S., (2013) Macromolecules, 46, p. 3631",
                "Groot, R.D., Warren, P.B., (1997) J. Chem. Phys., 107, p. 4423",
                "Sae-Oui, P., Thepsuwan, U., Thaptong, P., Sirisinha, C., (2014) Adv. Polym. Technol., 33, p. 21422",
                "Gai, J.-G., Li, H.-L., Schrauwen, C., Hu, G.-H., (2009) Polymer, 50, p. 336",
                "Karatrantos, A., Composto, R.J., Winey, K.I., Kröger, M., Clarke, N., (2012) Macromolecules, 45, p. 7274",
                "Xie, X., Mai, Y., Zhou, X., (2005) Mater. Sci. Eng., R, 49, p. 89",
                "Gulotty, R., Castellino, M., Jagdale, P., Tagliaferro, A., Balandin, A.A., (2013) ACS Nano, 7, p. 5114",
                "Pan, G., Manke, C.W., (2003) Int. J. Mod. Phys. B, 17, p. 231",
                "Jewett, A.I., Zhuang, Z., Shea, J.-E., (2013) Biophys. J., 104, p. 169a",
                "Pagonabarraga, I., Frenkel, D., (2000) Mol. Simul., 25, p. 167",
                "Gao, Y., Liu, J., Shen, J., Zhang, L., Guo, Z., Cao, D., (2014) Phys. Chem. Chem. Phys., 16, p. 16039",
                "Rafiee, R., Rabczuk, T., Pourazizi, R., Zhao, J., Zhang, Y., (2013) Adv. Mater. Sci. Eng., 2013, p. 183026",
                "Wang, Y.-C., Ju, S.-P., Huang, T.J., Wang, H.-H., (2011) Nanoscale Res. Lett., 6, p. 1",
                "Stukowski, A., (2010) Model. Simul. Mater. Sci. Eng., 18, p. 15012",
                "Hoogerbrugge, P.J., Koelman, J.M.V.A., (1992) Europhys. Lett., 19, p. 155",
                "Nieminen, R.M., (2002) J. Phys.: Condens. Matter, 14, p. 2859"
            ]
        },
        {
            "id": 23,
            "title": "Effect of Shrimp Shell Waste on the Properties of Wheat Gluten Based-Bioplastics",
            "abstract": "Wheat gluten based bioplastics with shrimp shell waste filler were prepared using compression molding. The effects of various amounts (0, 2.5, 5.0, 7.5 and 10 wt%) of shrimp shell powder and calcined shrimp shell powder on the tensile, morphological, thermal properties, and degradation of wheat gluten composites were investigated. The addition of shrimp shell powder improved the tensile properties of the wheat gluten composites. The tensile strength of the wheat gluten composite with 2.5 wt% of shrimp shell powder increased twofold compared to the wheat gluten based-bioplastic without shrimp shell loading. A comparison of the performance of the wheat gluten composites made with different shrimp shell types revealed that composites with calcined shrimp shell powder had better tensile, morphological and thermal properties due to the altered layer structure and higher mineral content resulting from calcination. Moreover, calcined shrimp shell powder had a significant influence on the degradation process of the wheat gluten composite. © 2017, Springer Science+Business Media, LLC.",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Riyajan S.-A.",
                "Thammahiwes S.",
                "Kaewtatip K."
            ],
            "keywords": [
                "degradation",
                "calcined",
                "shrimp shell",
                "composite",
                "wheat gluten"
            ],
            "references": [
                "Brzezinska, M.S., Walczak, M., Lalke-Porczyk, E., Donderski, W., Utilization of shrimp-shell waste as a substrate for the activity of chitinases produced by microorganisms (2010) J Environ Stud, 19, pp. 177-182. , COI: 1:CAS:528:DC%2BC3cXmtFyht7g%3D",
                "Tunc, S., Angellier, H., Cahyana, Y., Chalier, P., Gontard, N., Gastaldi, E., Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting (2007) J Memb Sci, 289, pp. 159-168. , COI: 1:CAS:528:DC%2BD2sXhsFKksr4%3D",
                "Yang, W., Kenny, J.M., Puglia, D., Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles (2015) Ind Crops Prod, 74, pp. 348-356. , COI: 1:CAS:528:DC%2BC2MXpsVyqtLo%3D",
                "Zárate-Ramírez, L.S., Romero, A., Martínez, I., Bengoechea, C., Partal, P., Guerrero, A., Effect of aldehydes on thermomechanical properties of gluten-based bioplastics (2014) Food Bioprod Process, 92, pp. 20-29",
                "Cho, Y.I., No, H.K., Meyers, S.P., Physicochemical characteristics and functional properties of various commercial chitin and chitosan products (1998) J Agric Food Chem, 46, pp. 3839-3843. , COI: 1:CAS:528:DyaK1cXltlWlsLo%3D",
                "Robertson, G.H., Cao, T.K., Gregorski, K.S., Hurkman, W.J., Tanaka, C.K., Chiou, B.-S., Glenn, G.M., Orts, W.J., Modification of vital wheat gluten with phosphoric acid to produce high free swelling capacity (2014) J Appl Polym",
                "Gok, M.K., Ozgumus, S., Demir, K., Cirit, U., Pabuccuolu, S., Cevher, E., Ozsoy, Y., Bacınolu, S., Development of starch based mucoadhesive vaginal drug delivery systems for application in veterinary medicine (2016) Carbohydr Polym, 136, pp. 63-70. , COI: 1:CAS:528:DC%2BC2MXhsVegtrzM",
                "Kunanopparat, T., Menut, P., Morel, M.H., Guilbert, S., Reinforcement of plasticized wheat gluten with natural fibers: from mechanical improvement to deplasticizing effect (2008) Compos A, 39, pp. 777-785",
                "Zuo, M., Lai, Z.Z., Song, Y.H., Zheng, Q., Preparation and properties of gluten/calcium carbonate composites (2008) Chin Chem Lett, 19, pp. 992-995. , COI: 1:CAS:528:DC%2BD1cXhtFKhtLnN",
                "Kumari, S., Rath, P., Sri Hari Kumar, A., Chitosan from shrimp shell (Crangon crangon) and fish scales (Labeorohita): Extraction and characterization (2016) Afr J Biotechnol, 15 (24), pp. 1258-1268. , COI: 1:CAS:528:DC%2BC1cXmsV2jsbo%3D",
                "Lee, Y.S., Hanna, M.A., Tapioca starch-poly(lactic acid)-cloisite 30B nanocomposite foams (2009) Polym Compos, 30, pp. 665-672. , COI: 1:CAS:528:DC%2BD1MXlsVWis7c%3D",
                "Li, H.Y., Tan, Y.Q., Zhang, L., Zhang, Y.X., Song, Y.H., Ye, Y., Xia, M.S., Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites (2012) J Hazard Mater, 217-218, pp. 256-262",
                "Sachindra, N.M., Bhaskar, N., In vitro antioxidant activity of liquor from fermented shrimp biowaste (2008) Bioresour Tech, 99, pp. 9013-9016. , COI: 1:CAS:528:DC%2BD1cXhtVOmurvI",
                "Ye, P., Reitz, L., Horan, C., Parnas, R., Manufacture and biodegradation of wheat gluten/basalt composite material (2006) J Polym Environ, 14 (1), pp. 1-7. , COI: 1:CAS:528:DC%2BD28Xot1WgtA%3D%3D",
                "Hong, N.V., Pyka, G., Wevers, M., Goderis, B., Puyvelde, P.V., Verpoest, I., Van Vuure, A.W., Processing rigid wheat gluten biocomposites for high mechanical performance (2015) Compos A, 79, pp. 74-81",
                "Bootklad, M., Chantarak, S., Kaewtatip, K., Novel biocomposites based on wheat gluten and rubber wood sawdust (2016) J Appl Polym Sci",
                "Tuck, C.S., Latham, A., Lee, P.W., Barone, J.R., Wheat gluten plasticized with its own hydrolysate (2014) J Polym Environ, 22, pp. 430-438. , COI: 1:CAS:528:DC%2BC2cXhs1Witr3I",
                "Yang, L., Zhang, A., Zheng, X., Shrimp shell catalyst for biodiesel production (2009) Energ Fuel, 23, pp. 3859-3865. , COI: 1:CAS:528:DC%2BD1MXotlOmtLk%3D",
                "Verma, D., Tomar, V., An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures (2015) Mater Sci Eng C, 49, pp. 243-250. , COI: 1:CAS:528:DC%2BC2MXovVSisA%3D%3D",
                "Zhi, S.H., Wan, L.S., Xu, Z.K., Poly(vinylidene fluoride)/poly(acrylicacid)/calciumcarbonate composite membranes via mineralization (2014) J Memb Sci, 454, pp. 144-154. , COI: 1:CAS:528:DC%2BC2cXitlShtbs%3D",
                "Langstraat, T.D., Jansens, K.J.A., Delcour, J.A., Verpoest, I., Puyvelde, P.V., Goderis, B., Effect of aqueous and alcoholic shear treatments on the properties of rigid plastics from wheat gluten (2015) Ind Crops Prod, 77, pp. 146-155. , COI: 1:CAS:528:DC%2BC2MXhsV2jtr7L",
                "Ji, G., Zhu, H., Jiang, X., Qi, C., Zhang, X.M., Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders (2009) J Appl Polym Sci, 114, pp. 3168-3176. , COI: 1:CAS:528:DC%2BD1MXhtFCisrrN",
                "Angellier-Coussy, H., Gastaldi, E., Gontard, N., Guillard, V., Influence of processing temperature on the water vapour transport properties of wheat gluten based agromaterials (2011) Ind Crops Prod, 33, pp. 57-461",
                "Sachindra, N.M., Mahendrakar, N.S., Process optimization for extraction of carotenoids from shrimp waste with vegetable oils (2005) Bioresour Tech, 96, pp. 1195-1200. , COI: 1:CAS:528:DC%2BD2MXpt1aqtA%3D%3D",
                "Dong, Z., Hou, X., Haigler, I., Yang, Y., Preparation and properties of cotton stalk bark fibers and their cotton blended yarns and fabrics (2016) J Clean Prod, 139, pp. 267-276. , COI: 1:CAS:528:DC%2BC28XhsVyltLbO",
                "Park, S.K., Hettiarachchy, N.S., Were, L., Degradation behavior of soy protein-wheat gluten films in simulated soil conditions (2000) J Agric Food Chem, 48, pp. 3027-3031. , COI: 1:CAS:528:DC%2BD3cXktlerurk%3D",
                "Zhang, X., Do, M.D., Kurniawan, L., Qiao, G.G., Wheat gluten-based renewable and biodegradable polymer materials with enhanced hydrophobicity by using epoxidized soybean oil as a modifier (2010) Carbohydr Res, 345, pp. 2174-2182. , COI: 1:CAS:528:DC%2BC3cXhtFygtLnL",
                "Hemsri, S., Asandei, A.D., Grieco, K., Parnas, R.S., Biopolymer composites of wheat gluten with silica and alumina (2011) Compos A, 42, pp. 1764-1773",
                "Bibi, F., Guillaume, C., Vena, A., Gontard, N., Sorli, B., Wheat gluten, a bio-polymer layer to monitor relative humidity in food packaging: electric and dielectric characterization (2016) Sens Actuat A Phys, 247, pp. 355-367. , COI: 1:CAS:528:DC%2BC28XhtV2nsLfK",
                "Poompradub, S., Ikeda, Y., Kokubo, Y., Shiono, T., Cuttlebone as reinforcing filler for natural rubber (2008) Eur Polym J, 44, pp. 4157-4164. , COI: 1:CAS:528:DC%2BD1cXhsVKht7rF"
            ]
        },
        {
            "id": 64,
            "title": "A new class of fuzzy contractive mappings and fixed point theorems",
            "abstract": "The main aim of this work is to unify different classes of fuzzy contractive mappings by introducing a new class of fuzzy contractive mappings called fuzzy Z-contractive mappings. For this new class of mappings, suitable conditions are framed to ensure the existence of fixed point in M-complete fuzzy metric spaces (in the sense of George and Veeramani). A comprehensive set of examples are presented to support the claim. © 2018 Elsevier B.V.",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Sintunavarat W.",
                "Gopal D.",
                "Shukla S."
            ],
            "keywords": [
                "m-completeness",
                "edelstein's mapping",
                "fixed point",
                "fuzzy z-contractive mapping",
                "fuzzy metric space"
            ],
            "references": [
                ""
            ]
        },
        {
            "id": 185,
            "title": "The (α, β)-generalized convex contractive condition with approximate fixed point results and some consequence",
            "abstract": "The aim of this work is to introduce some new notions of generalized convex contraction mappings and establish some approximate fixed point theorems for such mappings in the setting of complete metric spaces. Examples and application to approximate fixed point results for cyclic mappings are also given in order to illustrate the effectiveness of the obtained results. © 2016, Latif et al.",
            "published_year": 2016,
            "file": null,
            "authors": [
                "Sintunavarat W.",
                "Ninsri A.",
                "Latif A."
            ],
            "keywords": [
                "(α, β)-generalized convex contraction mapping",
                "contraction mapping",
                "approximate fixed point",
                "cyclic generalized convex contraction mappings"
            ],
            "references": [
                "Meir, A., Keeler, E., A theorem on contraction mappings (1969) J. Math. Anal. Appl., 28, pp. 326-329",
                "Alizadeh, S., Moradloub, F., Salimic, P., Some fixed point results for (α, β), (ψ, ϕ)-contractive mappings (2014) Filomat, 28 (3), pp. 635-647",
                "Geraghty, M., On contractive mappings (1973) Proc. Am. Math. Soc., 40, pp. 604-608",
                "Chatterjea, S.K., Fixed point theorems (1972) C. R. Acad. Bulgare Sci., 25, pp. 727-730",
                "Browder, F.E., Petrysyn, W.V., The solution by iteration of nonlinear functional equation in Banach spaces (1966) Bull. Am. Math. Soc., 72, pp. 571-576",
                "Kannan, R., Some results on fixed points II (1969) Am. Math. Mon., 76, pp. 405-408",
                "Ćirić, L.B., A generalization of Banach principle (1974) Proc. Am. Math. Soc., 45, pp. 267-273",
                "Banach, S., Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales (1922) Fundam. Math., 3, pp. 133-181",
                "Kohlenbach, U., Leustean, L., The approximate fixed point property in product spaces (2007) Nonlinear Anal., 66, pp. 806-818",
                "Reich, S., Approximate selections, best approximations, fixed points, and invariant sets (1978) J. Math. Anal. Appl., 62, pp. 104-113",
                "Miandaragh, M.A., Postolache, M., Rezapour, S., Some approximate fixed point results for generalized α-contractive mappings (2013) Sci. Bull. ‘Politeh.’ Univ. Buchar., Ser. A, Appl. Math. Phys., 75 (2), pp. 3-10",
                "Miandaragh, M.A., Postolache, M., Rezapour, S., Approximate fixed points of generalized convex contractions (2013) Fixed Point Theory Appl., 2013",
                "Mizoguchi, N., Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces (1989) J. Math. Anal. Appl., 141, pp. 177-188",
                "Suzuki, T., A generalized Banach contraction principle that characterizes metric completeness (2008) Proc. Am. Math. Soc., 136, pp. 1861-1869",
                "Istratescu, V.I., Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters, I (1982) Ann. Mat. Pura Appl., 130 (4), pp. 89-104"
            ]
        },
        {
            "id": 24,
            "title": "Field-scale spatial variability of electrical conductivity of the inland, salt-affected soils of Northeast Thailand",
            "abstract": "Salt-affected soil maps for Northeast Thailand focus on the percentage of salt crusts. Investigation was done to find the field-scale spatial variability of the electrical conductivity of saturation extract (ECe) in salt-affected areas (percentage salt crusts: very severely = class 1; severely = class 2, and moderately = class 3). Two study sites were selected for each class (n = 6). Soil samples (n = 100) were collected at each site using stratified, systematic, unaligned sampling, and analyzed for ECe. Variations in ECe were assessed using basic statistics and geostatistics. At the field-scale, in every class, the best-fit semivariogram model generated was satisfactory (R2 > 0.8). Interpretation from the relevant model parameters (i.e., nugget, sill, and effective range), together with the interpolated (kriged) maps, demonstrated that the characteristics of spatial variability of soil ECe were inconsistent, even between different sites of the same salt-affected soil class. In general, various degrees of small-scale variation were observed, very high variation of ECe was common, spatial dependence was strong to moderate, while the spatial distribution pattern was in distinctive patches. The size of patches depended on the effective range at each site. This study also revealed that the class 1 areas were entirely, very strongly saline (ECes range, 56.70 and 433.00 dS·m-1), whereas the areas of class 3 were non-saline to moderately saline (range, 0.11 -5.26 dS·m-1). Class 2 areas were much more complex; the soils varied from non-saline to very strongly saline (range, 0.16 - 49.00 dS·m-1). Information on the nature and characteristics in the spatial variability of soil ECe is useful for developing strategies for management of salt-affected soils in precision agriculture in this region. © 2018, Walailak University. All rights reserved.",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Katawatin R.",
                "Lerdsuwansri R.",
                "Wongpichet K.",
                "Pannangpetch K.",
                "Kingpaiboon S.",
                "Phontusang P."
            ],
            "keywords": [
                "salt-affected soils",
                "geostatistics",
                "northeast thailand",
                "electrical conductivity",
                "spatial variability"
            ],
            "references": [
                "Yang, F., Zhang, G., Yin, X., Liu, Z., Field-scale spatial variation of saline-sodic soil and its relation with environmental factors in western Songnen Plain of China (2011) Int. J. Environ. Res. Public Health, 8, pp. 374-387",
                "Pozdnyakova, L., Zhang, R., Geostatistical analyses of soil salinity in a large field (1999) Precis. Agr., 1, pp. 153-165",
                "(1954) Diagnosis and Improvement of Saline and Alkali Soils: Handbook No. 60, pp. 83-88. , United States Department of Agriculture, Washington DC, USA",
                "Wichaidit, P., (1995) Report on Survey and Studies of Salt-Affected Soils: Khon Kaen Province (In Thai), pp. 1-20. , Soil Survey and Classification Section, Land Development Department, Bangkok, Thailand",
                "Eldeiry, A.A., Garcia, L.A., Evaluating the performance of ordinary kriging in mapping soil salinity (2012) J. Irrig. Drain. Eng., 138, pp. 1046-1059",
                "Yao, R.J., Yang, J.S., Gao, P., Shao, H.B., Liu, G.M., Yu, S.P., Comparison of statistical prediction methods for characterizing the spatial variability of apparent electrical conductivity in coastal salt-affected farmland (2014) Environ. Earth Sci., 71, pp. 233-243",
                "Robertson, T.P., Metternicht, G., Testing the performance o spatial interpolation techniques for mapping soil properties (2006) Comput. Electron. Agr., 50, pp. 97-108",
                "Garten, C.T., Kang, S., Brice, D.J., Schadt, C.W., Zhou, J., Variability in soil properties at different spatial scales (1m-1km) in a deciduous forest ecosystem (2007) Soil Biol. Biochem., 39, pp. 2621-2627",
                "Robertson, G.P., (2008) GS+: Geostatistics for the Environmental Sciences, pp. 52-59. , Gamma Design Software, Michigan, Plainwell, USA",
                "Arunin, S., (1996) Saline Soils in Thailand (In Thai), pp. 1-3. , Land Development Department, Bangkok, Thailand",
                "Clark, I., Harper, W.V., (2007) Practical Geostatistics 2000, pp. 216-222. , Geostokos (Ecosse), Scotland",
                "Michot, D., Walter, C., Adam, I., Guéro, Y., Digital assessment of soil-salinity dynamics after a major flood in the Niger River valley (2013) Geoderma, 207-208, pp. 193-204",
                "Triantafilis, J., Buchanan, S.M., Mapping the spatial distribution of subsurface saline material in the Darling River valley (2010) J. Appl. Geophys., 70, pp. 144-160",
                "Sukchan, S., Salt-Affected Soil Map of Thung Kula Ronghai at 1:50,000 Scale (in Thai) (2005) Office of Soil Survey and Land Use Planning, pp. 12-14. , Bangkok, Thailand",
                "Johnston, K., Hoef, J.M.V., Krivoruchko, K., Lucas, N., (2001) Using Arcgis Geostatistical Analyst, p. 306. , Esri Redlands, California, USA",
                "Toparkngarm, B., (2006) Saline Soils in Northeast Thailand (In Thai), pp. 1-263. , Khon Kaen University, Khon Kaen, Thailand",
                "Duffera, M., White, J.G., Weisz, R., Spatial variability of southeastern US coastal plain soil physical properties: Implications for site-specific management (2007) Geoderma, 137, pp. 327-339",
                "Bilgili, A.V., Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques (2013) Environ. Monit. Assess., 185, pp. 777-795",
                "Jansom, S., Katawatin, R., Pannangpetch, K., Some important chemical properties of salt-affected soils in Khon Kaen province (In Thai) (2012) Khon Kaen Agr. J., 40, pp. 259-263",
                "Jansom, S., Katawatin, R., Pannangpetch, K., Variability of electrical conductivity, sodium adsorption ratio, and soil reaction in salt affected areas in Northeast Thailand (2012) Proceedings of the 1st Asean plus Three Graduate Research Congress, pp. ST317-ST322. , Chiang Mai, Thailand",
                "Odeh, I.O.A., Onus, A., Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia (2008) J. Environ. Manag., 42, pp. 265-278",
                "Isaaks, E.H., Srivastava, R.M., (1989) An Introduction to Applied Geostatistics, pp. 273-322. , Oxford University Press, New York, USA",
                "(2005) Characteristics and Properties of Established Soil Series in the Northeast Region of Thailand (In Thai), pp. 16-67. , Land Development Department, Bangkok, Thailand",
                "Cemek, B., Güler, M., Kiliç, K., Demir, Y., Arslan, H., Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey (2007) Environ. Monit. Assess., 124, pp. 223-234",
                "Kawasaki, J., Herath, S., Impact assessment of climate change on rice production in Khon Kaen province, Thailand (2011) J. Int. Soc. Southeast Asian Agr. Sci., 17, pp. 14-28",
                "Oliver, M., Webster, R., A tutorial guide to geostatistics: Computing and modelling variograms and kriging (2014) Catena, 113, pp. 56-69",
                "Webster, R., Quantitative Spatial analysis of Soil in the Field (1985) Advances in Soil Science, pp. 1-70. , BA Stewart (ed.), Springer, New York, USA",
                "Puengpana, N., Subhasaram, T., Patcharapreecha, P., Miura, K., Wada, H., Impermeable layers in salt affected sandy soils in northeast Thailand (1990) J. Sci. Soc. Thailand, 16, pp. 77-88",
                "Katawatin, R., Sukchan, S., Mapping soil salinity and soil erosion in Thailand with emphasis on computer-assisted techniques (2012) Pedologist, 55, pp. 343-354",
                "Mitsuchi, M., Wichaidit, P., Jeungnijnirund, S., Outline of Soils of the Northeast Plateau, Thailand: Their Characteristics and Constraints (1986) Agricultural Development Research Center in Northeast Thailand, pp. 24-40. , Khon Kaen, Thailand",
                "Plaster, E.J., (2013) Soil Science and Management, pp. 269-272. , Clifton Park, New York, USA",
                "Umali, B.P., Oliver, D.P., Forrester, S., Chittleborough, D.J., Hutson, J.L., Kookana, R.S., Ostendorf, B., The effect of terrain and management on the spatial variability of soil properties in an apple orchard (2012) Catena, 93, pp. 38-48",
                "Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., Konopka, A.E., Field-scale variability of soil properties in central Iowa soils (1994) Soil Sci. Soc. Am. J., 58, pp. 1501-1511",
                "López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Orden, M.S., García-Torres, L., Spatial variability of agricultural soil parameters in southern Spain (2002) Plant Soil, 246, pp. 97-105",
                "(1999) Soil Taxonomy-A Basic System of Soil Classification for Making and Interpreting Soil Surveys, pp. 1-872. , Agriculture Handbook no. 436, 2nd ed. Washington DC, USA",
                "Emadi, M., Baghernejad, M., Emadi, M., Maftoun, M., Assessment of some soil properties by spatial variability in saline and sodic soils in Arsanjan plain, Southern Iran (2008) Pak. J. Biol. Sci., 11, pp. 238-243",
                "Phrek, G., Drivers of Change in Thai Agriculture: Implications for Development and Policy in the New Millennium (2010) Agricultural Transition in Asia: Trajectories and Challenges, pp. 101-142. , GB Thapa, PK Viswanathan, JK Routray and MM Ahmad, Asian Institute of Technology, Bangkok, Thailand",
                "Cambardella, C.A., Karlen, D.L., Spatial analysis of soil fertility parameters (1999) Precis. Agr., 1, pp. 5-14",
                "Marchetti, A., Piccini, C., Francaviglia, R., Mabit, L., Spatial distribution of soil organic matter using geostatistics: A key indicator to assess soil degradation status in central Italy (2012) Pedosphere, 22, pp. 230-242",
                "Webster, R., Oliver, M.A., (2001) Geostatistics for Environmental Scientists (Statistics in Practice), pp. 10-31. , John Wiley & Son, UK",
                "Burrough, P.A., McDonell, R.A., (1998) Principles of Geographical Information Systems, pp. 17-33. , Oxford University Press, London, UK",
                "Wilding, L.G., Soil Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys (1985) Soil Spatial Variability Proceedings of a Workshop of the ISSS and the SSA, Las Vegas PUDOC, pp. 166-194. , DR Nielsen and J Bouma (eds.), Wageningen, Netherland",
                "(2001) ILWIS 3.0 Academic User’s Guide. International Institute for Aerospace Survey and Earth Sciences, pp. 417-456. , Enschede, Netherland",
                "Mueller, T.G., Pusuluri, N.B., Mathisa, K.K., Cornelius, P.L., Barnhisel, R.I., Shearer, S.A., Map quality for ordinary and inverse distance weighted interpolation (2004) Soil Sci. Soc. Am. J., 68, pp. 2042-2047",
                "Zhu, Q., Lin, H.S., Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes (2010) Pedosphere, 20, pp. 594-606",
                "Mabit, L., Bernard, C., Assessment of spatial distribution of fallout radionuclides through geostatistics concept (2007) J. Environ. Radioact., 97, pp. 206-219",
                "(2008) Geostatistics for the Environmental Sciences, pp. 1-158. , Gamma Design Software, Plainwell, Michigan, USA",
                "Li, J., Heap, A., A Review of Spatial Interpolation Methods for Environmental Scientists (2008) Geoscience Australia, pp. 4-25. , Canberra, Australia"
            ]
        },
        {
            "id": 25,
            "title": "Fabrication and characterization of triple-responsive composite hydrogel for targeted and controlled drug delivery system",
            "abstract": "In this study, to prepare a new magnetic composite hydrogel (Mag-H) based on gelatin/bacterial cellulose (BC), we synthesized gelatin-coated magnetic nanoparticles and then incorporated into the gelatin/BC matrices, followed by chemical crosslinking with glutaraldehyde. The physicochemical properties of Mag-H were evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), texture analyzer, swelling test, and in vitro drug release behavior using methylene blue (MB) as a model drug. The FTIR spectra showed that glutaraldehyde crosslinked with gelatin. To improve the thermal and mechanical properties of gelatin hydrogel (Gel-H), the BC and magnetic nanoparticles were incorporated into the gelatin network. Due to the superparamagnetism of magnetic nanoparticles, Mag-H possessed a powerful magnetic property for achieving a magnetic targeting. Mag-H had a maximum swelling ratio of 1085 ± 12% in phosphate buffer saline (pH 1.2) at 37 °C, meanwhile its maximum drug release of 80.77 ± 0.33% was observed at the same condition with an external magnetic field application. Interestingly, Mag-H showed temperature-, pH-, and magnetic field-responsive properties, which would be a promising candidate for targeted and controlled drug delivery system. © 2018 Elsevier B.V.",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Ummartyotin S.",
                "Rojanapanthu P.",
                "Treesuppharat W.",
                "Sathirakul K.",
                "Siangsanoh C."
            ],
            "keywords": [
                "hydrogels",
                "controlled release",
                "biomaterials",
                "magnetic nanoparticles",
                "drug delivery"
            ],
            "references": [
                "Biondi, M., Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications (2015) Gels, 1 (2), pp. 162-178",
                "Zhao, W., In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery (2015) Biomacromolecules, 16, pp. 2522-2528",
                "Shin, M.K., Nanocomposite hydrogel with high toughness for bioactuators (2009) Adv. Mater., 21 (17). , (p. 1712-+)",
                "Chantrell, R.W., Popplewell, J., Charles, S.W., Measurements of particle size distribution parameters in ferrofluids (1978) IEEE Trans. Magn., 14 (5), pp. 975-977",
                "Hitchcock, D.I., The Isoelectric point of a standard gelatin preparation (1931) J. Gen. Physiol., 14 (6), pp. 685-699",
                "Muroski, M.E., Controlled payload release by magnetic field triggered neural stem cell destruction for malignant glioma treatment (2016) PLoS One, 11 (1)",
                "Kuijpers, A.J., Cross-linking and characterisation of gelatin matrices for biomedical applications (2000) J. Biomater. Sci. Polym. Ed., 11 (3), pp. 225-243",
                "Cao, X., Synthesis of pure amorphous Fe2O3 (1997) J. Mater. Res., 12 (2), pp. 402-406",
                "Yang, H., Kao, W.Y.J., Thermoresponsive gelatin/monomethoxy poly(ethylene glycol)-poly(D,L-lactide) hydrogels: formulation, characterization, and antibacterial drug delivery (2006) Pharm. Res., 23 (1), pp. 205-214",
                "Nair, A.B., Vyas, H., Kumar, A., Controlled release matrix uncoated tablets of enalapril maleate using hpmc alone (2010) J. Basic Clin. Pharm., 1 (2), pp. 71-75",
                "Uva, M., Influence of alternating and static magnetic fields on drug release from hybrid hydrogels containing magnetic nanoparticles (2014) J. Biomater. Nanobiotechnol., 5, pp. 116-127",
                "Sing, K.S.W., Reporting physisorption data for gas/solid systems (1985) Pure Appl. Chem., 57 (4), pp. 603-619",
                "Luo, X., In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery (2009) J. Mater. Chem., 19 (21), pp. 3538-3545",
                "Tong, X., Swelling and mechanical behaviors of carbon nanotube/poly (vinyl alcohol) hybrid hydrogels (2007) Mater. Lett., 61 (8-9), pp. 1704-1706",
                "Ummartyotin, S., Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display (2012) Ind. Crop. Prod., 35, pp. 92-97",
                "Halib, N., Amin, M.C.I.M., Ahmad, I., Physicochemical properties and characterization of Nata de coco from local food industries as a source of cellulose (2012) Sains Malaysiana, 41 (2), pp. 205-211",
                "Shirazi, H., Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications (2015) Beilstein J. Nanotechnol., 6, pp. 1677-1689",
                "Thanyacharoen, T., The chemical composition and antioxidant and release properties of a black rice (Oryza sativa L.)-loaded chitosan and polyvinyl alcohol composite (2017) J. Mol. Liq., 248, pp. 1065-1070",
                "Gaihre, B., Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study (2009) Int. J. Pharm., 365 (1-2), pp. 180-189",
                "Varaprasad, K., Biodegradable chitosan hydrogels for in vitro drug release studies of 5-flurouracil an anticancer drug (2012) J. Polym. Environ., 20 (2), pp. 573-582",
                "Hassan, S., Yasin, T., Synthesis of radiation crosslinked poly(acrylic acid) in the presence of phenyltriethoxysilane (2014) Radiat. Phys. Chem., 97, pp. 292-297",
                "Mahdavi, M., Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications (2013) Molecules, 18 (7), pp. 7533-7548",
                "Ooi, S.Y., Ahmad, I., Amin, M.C.I.M., Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems (2016) Ind. Crop. Prod., 93, pp. 227-234",
                "Amin, M.C.I.M., Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery (2012) Carbohydr. Polym., 88 (2), pp. 465-473",
                "Zhao, W., A recyclable and regenerable magnetic chitosan absorbent for dye uptake (2016) Carbohydr. Polym., 150, pp. 201-208",
                "Nainggolan, H., Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi (R) bionanocomposite (2013) Beilstein J. Nanotechnol., 4, pp. 325-329",
                "Thanyacharoen, T., Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: release characteristics and antioxidant activity (2018) Int. J. Biol. Macromol., 107, pp. 363-370",
                "Juntaro, J., Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties (2012) Carbohydr. Polym., 87 (4), pp. 2464-2469",
                "Boral, S., Gupta, A.N., Bohidar, H.B., Swelling and de-swelling kinetics of gelatin hydrogels in ethanol-water marginal solvent (2006) Int. J. Biol. Macromol., 39 (4-5), pp. 240-249",
                "Chomoucka, J., Magnetic nanoparticles and targeted drug delivering (2010) Pharmacol. Res., 62 (2), pp. 144-149",
                "Giani, G., Fedi, S., Barbucci, R., Hybrid magnetic hydrogel: a potential system for controlled drug delivery by means of alternating magnetic fields (2012) Polymer, 4 (2), pp. 1157-1169",
                "Jantaratana, P., Noodam, J., Sirisathitkul, C., Magnetic hysteresis and electrical impedance spectra of hard magnetic SmCo5 and soft magnetic Co30Ag70 composites (2013) Rare Metal Mater. Eng., 42 (1), pp. 19-22",
                "Ritger, P.L., Peppas, N.A., A simple equation for description of solute release II. Fickian and anomalous release from swellable devices (1987) J. Control. Release, 5, pp. 37-42",
                "Ooi, S.Y., Ahmad, I., Amin, M.C.I.M., Effect of cellulose nanocrystals content and pH on swelling behaviour of gelatin based hydrogel (2015) Sains Malaysiana, 44 (6), pp. 793-799",
                "Tresilwised, N., Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes (2012) Biomaterials, 33 (1), pp. 256-269",
                "Treesuppharat, W., Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems (2017) Biotechnol. Rep. (Amst.), 15, pp. 84-91",
                "Kajjari, P.B., Manjeshwar, L.S., Aminabhavi, T.M., Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of theophylline (2011) Ind. Eng. Chem. Res., 50 (13), pp. 7833-7840",
                "Hosseini, H., Tenhu, H., Hietala, S., Rheological properties of thermoresponsive nanocomposite hydrogels (2016) J. Appl. Polym. Sci., 43123, pp. 1-6",
                "Huang, Y.J., A novel magnetic triple-responsive composite semi-IPN hydrogels for targeted and controlled drug delivery (2012) Eur. Polym. J., 48 (10), pp. 1734-1744",
                "Pandey, M., Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery (2013) Int. J. Polym. Sci., pp. 1-10",
                "Ullah, F., Classification, processing and application of hydrogels: a review (2015) Mater. Sci. Eng. C, 57, pp. 414-433",
                "Cai, Z., Kim, J., Preparation and characterization of novel bacterial cellulose/gelatin scaffold for tissue regeneration using bacterial cellulose hydrogel (2010) J. Nanotechnol. Eng. Med., 1 (2). , (p. 021002-1-6)",
                "Reddy, N.N., Magnetic and electric responsive hydrogel-magnetic nanocomposites for drug-delivery application (2011) J. Appl. Polym. Sci., 122 (2), pp. 1364-1375"
            ]
        },
        {
            "id": 26,
            "title": "Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers",
            "abstract": "In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology. © 2018 American Chemical Society.",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Nueangnoraj K.",
                "Iwata M.",
                "Takeoka Y.",
                "Seki T.",
                "Yoshioka S.",
                "Nishihara H."
            ],
            "keywords": [],
            "references": [
                "Forster, J.D., Noh, H., Liew, S.F., Saranathan, V., Schreck, C.F., Yang, L., Park, J.G., Dufresne, E.R., Biomimetic Isotropic Nanostructures for Structural Coloration (2010) Adv. Mater., 22, pp. 2939-2944",
                "Liu, Y., Zhou, L., Li, Y.N., Deng, R.P., Zhang, H.J., Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting (2017) Nanoscale, 9, pp. 491-496",
                "Takeoka, Y., Honda, M., Seki, T., Ishii, M., Nakamura, H., Structural Colored Liquid Membrane without Angle Dependence (2009) ACS Appl. Mater. Interfaces, 1, pp. 982-986",
                "Wang, Y., Cepe, K., Zboril, R., UV light-switchable transparent polymer films and invisible luminescent inks based on carbon dots and lanthanide complexes (2016) J. Mater. Chem. C, 4, pp. 7253-7259",
                "Song, Z., Lin, T.R., Lin, L.H., Lin, S., Fu, F.F., Wang, X.C., Guo, L.Q., Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots (2016) Angew. Chem., Int. Ed., 55, pp. 2773-2777",
                "Xiang, Q., Luo, Y.W., A new scalable-up approach to non-iridescent structural blue films with relatively high tensile properties via RAFT emulsion polymerization (2016) Polymer, 106, pp. 285-293",
                "Lai, C.F., Wang, Y.C., Hsu, H.C., High transparency in the structural color resin films through quasi-amorphous arrays of colloidal silica nanospheres (2016) J. Mater. Chem. C, 4, pp. 398-406",
                "Xiao, M., Hu, Z.Y., Wang, Z., Li, Y.W., Tormo, A.D., Le Thomas, N., Wang, B., Dhinojwala, A., Bioinspired bright noniridescent photonic melanin supraballs (2017) Sci. Adv., 3. , e1701151",
                "Liang, J., Castronovo, M., Scoles, G., DNA as Invisible Ink for AFM Nanolithography (2012) J. Am. Chem. Soc., 134, pp. 39-42",
                "Kawamura, A., Kohri, M., Morimoto, G., Nannichi, Y., Taniguchi, T., Kishikawa, K., Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors (2016) Sci. Rep., 6. , 33984",
                "Hu, H.B., Chen, C.L., Chen, Q.W., Magnetically controllable colloidal photonic crystals: Unique features and intriguing applications (2013) J. Mater. Chem. C, 1, pp. 6013-6030",
                "Sk, M.P., Chattopadhyay, A., Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor (2014) RSC Adv., 4, pp. 31994-31999",
                "Ge, D., Yang, L.L., Wu, G.X., Yang, S., Spray coating of superhydrophobic and angle-independent coloured films (2014) Chem. Commun., 50, pp. 2469-2472",
                "Liew, S.F., Forster, J., Noh, H., Schreck, C.F., Saranathan, V., Lu, X., Yang, L., Cao, H., Short-range order and near-field effects on optical scattering and structural coloration (2011) Opt. Express, 19, pp. 8208-8217",
                "Yoshioka, S., Takeoka, Y., Production of Colourful Pigments Consisting of Amorphous Arrays of Silica Particles (2014) ChemPhysChem, 15, pp. 2209-2215",
                "Gotoh, Y., Suzuki, H., Kumano, N., Seki, T., Katagiri, K., Takeoka, Y., An amorphous array of poly(N-isopropylacrylamide) brush-coated silica particles for thermally tunable angle-independent photonic band gap materials (2012) New J. Chem., 36, pp. 2171-2175",
                "Teshima, M., Seki, T., Kawano, R., Takeuchi, S., Yoshioka, S., Takeoka, Y., Preparation of structurally colored, monodisperse spherical assemblies composed of black and white colloidal particles using a micro-flow-focusing device (2015) J. Mater. Chem. C, 3, pp. 769-777",
                "Yi, B., Shen, H.F., Liquid-immune structural colors with angle-independence inspired from hollow melanosomes (2017) Chem. Commun., 53, pp. 9234-9237",
                "Walz, M.-M., Schirmer, M., Vollnhals, F., Lukasczyk, T., Steinruck, H.P., Marbach, H., Electrons as \"invisible Ink\": Fabrication of Nanostructures by Local Electron Beam Induced Activation of SiOx (2010) Angew. Chem., Int. Ed., 49, pp. 4669-4673",
                "Takeoka, Y., Yoshioka, S., Takano, A., Arai, S., Nueangnoraj, K., Nishihara, H., Teshima, M., Seki, T., Production of Colored Pigments with Amorphous Arrays of Black and White Colloidal Particles (2013) Angew. Chem., Int. Ed., 52, pp. 7261-7265",
                "Takeoka, Y., Yoshioka, S., Teshima, M., Takano, A., Harun-Ur-Rashid, M., Seki, T., Structurally Coloured Secondary Particles Composed of Black and White Colloidal Particles (2013) Sci. Rep., 3. , 2371",
                "Andres, J., Hersch, R.D., Moser, J.E., Chauvin, A.S., A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks (2014) Adv. Funct. Mater., 24, pp. 5029-5036",
                "Park, J.G., Kim, S.H., Magkiriadou, S., Choi, T.M., Kim, Y.S., Manoharan, V.N., Full-Spectrum Photonic Pigments with Non-iridescent Structural Colors through Colloidal Assembly (2014) Angew. Chem., Int. Ed., 53, pp. 2899-2903",
                "Zhou, J., Han, P., Liu, M.J., Zhou, H.Y., Zhang, Y.X., Jiang, J.K., Liu, P., Yao, X., Self-Healable Organogel Nanocomposite with Angle-Independent Structural Colors (2017) Angew. Chem., Int. Ed., 56, pp. 10462-10466",
                "Takeoka, Y., Stimuli-responsive opals: Colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials (2013) J. Mater. Chem. C, 1, pp. 6059-6074",
                "Katagiri, K., Tanaka, Y., Uemura, K., Inumaru, K., Seki, T., Takeoka, Y., Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition (2017) NPG Asia Mater., 9. , e355",
                "Kim, K.W., Bocharova, V., Halamek, J., Oh, M.K., Katz, E., Steganography and Encrypting Based on Immunochemical Systems (2011) Biotechnol. Bioeng., 108, pp. 1100-1107",
                "Shi, L., Zhang, Y.F., Dong, B.Q., Zhan, T.R., Liu, X.H., Zi, J., Amorphous Photonic Crystals with only Short-Range Order (2013) Adv. Mater., 25, pp. 5314-5320",
                "Hirashima, R., Seki, T., Katagiri, K., Akuzawa, Y., Torimotoa, T., Takeoka, Y., Light-induced saturation change in the angle-independent structural coloration of colloidal amorphous arrays (2014) J. Mater. Chem. C, 2, pp. 344-348",
                "Harun-Ur-Rashid, M., Bin Imran, A., Seki, T., Ishi, M., Nakamura, H., Takeoka, Y., Angle-Independent Structural Color in Colloidal Amorphous Arrays (2010) ChemPhysChem, 11, pp. 579-583",
                "Zeng, Q., Ding, C., Li, Q.S., Yuan, W., Peng, Y., Hu, J.C., Zhang, K.Q., Rapid fabrication of robust, washable, self-healing superhydrophobic fabrics with non-iridescent structural color by facile spray coating (2017) RSC Adv., 7, pp. 8443-8452",
                "Sonawane, S.L., Asha, S.K., Fluorescent Polystyrene Microbeads as Invisible Security Ink and Optical Vapor Sensor for 4-Nitrotoluene (2016) ACS Appl. Mater. Interfaces, 8, pp. 10590-10599",
                "Ge, D., Yang, L.L., Wu, G.X., Yang, S., Angle-independent colours from spray coated quasi-amorphous arrays of nanoparticles: Combination of constructive interference and Rayleigh scattering (2014) J. Mater. Chem. C, 2, pp. 4395-4400",
                "Kohri, M., Nannichi, Y., Taniguchi, T., Kishikawa, K., Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules (2015) J. Mater. Chem. C, 3, pp. 720-724",
                "Wang, F., Zhang, X., Zhang, L., Cao, M., Lin, Y., Zhu, J.F., Rapid fabrication of angle-independent structurally colored films with a superhydrophobic property (2016) Dyes Pigm., 130, pp. 202-208",
                "Sun, H., Liu, S.J., Lin, W.P., Zhang, K.Y., Lv, W., Huang, X., Huo, F.W., Huang, W., Smart responsive phosphorescent materials for data recording and security protection (2014) Nat. Commun., 5. , 3601",
                "Wang, F., Zhang, X., Lin, Y., Wang, L., Zhu, J.F., Structural Coloration Pigments based on Carbon Modified ZnS@SiO2 Nanospheres with Low-Angle Dependence, High Color Saturation, and Enhanced Stability (2016) ACS Appl. Mater. Interfaces, 8, pp. 5009-5016",
                "Das, T., Pramanik, A., Haldar, D., On-line Ammonia Sensor and Invisible Security Ink by Fluorescent Zwitterionic Spirocyclic Meisenheimer Complex (2017) Sci. Rep., 7. , 40465",
                "Zhang, W., Zhang, Q., Zhao, M.Q., Kuhn, L.T., Direct writing on graphene 'paper' by manipulating electrons as 'invisible ink' (2013) Nanotechnology, 24. , 275301",
                "Lim, C.H., Kang, H., Kim, S.H., Colloidal Assembly in Leidenfrost Drops for Noniridescent Structural Color Pigments (2014) Langmuir, 30, pp. 8350-8356",
                "Iwamura, S., Nishihara, H., Kyotani, T., Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling (2013) J. Power Sources, 222, pp. 400-409",
                "Baride, A., Meruga, J.M., Douma, C., Langerman, D., Crawford, G., Kellar, J.J., Cross, W.M., May, P.S., A NIR-to-NIR upconversion luminescence system for security printing applications (2015) RSC Adv., 5. , 101338",
                "Xuan, R.Y., Ge, J.P., Invisible photonic prints shown by water (2012) J. Mater. Chem., 22, pp. 367-372",
                "Zhang, C., Wang, B., Li, W.B., Huang, S.Q., Kong, L., Li, Z.C., Li, L., Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption (2017) Nat. Commun., 8. , 1138",
                "Wu, S., Liu, B.Q., Su, X., Zhang, S.F., Structural Color Patterns on Paper Fabricated by Inkjet Printer and Their Application in Anticounterfeiting (2017) J. Phys. Chem. Lett., 8, pp. 2835-2841",
                "Takeoka, Y., Fusion materials for biomimetic structurally colored materials (2015) Polym. J., 47, pp. 106-113",
                "Noh, H., Liew, S.F., Saranathan, V., Mochrie, S.G.J., Prum, R.O., Dufresne, E.R., Cao, H., How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers (2010) Adv. Mater., 22, pp. 2871-2880",
                "Lee, I., Kim, D., Kal, J., Baek, H., Kwak, D., Go, D., Kim, E., Kang, Y., Quasi-Amorphous Colloidal Structures for Electrically Tunable Full-Color Photonic Pixels with Angle-Independency (2010) Adv. Mater., 22, pp. 4973-4977",
                "Iwata, M., Teshima, M., Seki, T., Yoshioka, S., Takeoka, Y., Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background (2017) Adv. Mater., 29. , 1605050",
                "Magkiriadou, S., Park, J.G., Kim, Y.S., Manoharan, V.N., Absence of red structural color in photonic glasses, bird feathers, and certain beetles (2014) Phys. Rev. E, 90. , 062302",
                "Chen, C., Dong, Z.Q., Chen, Y., Hu, X.B., Zhu, X.R., Zhu, Z.G., Qian, S.H., Shih, W.H., Revealing invisible photonic printing: Colorful pattern shown by water (2017) IOP Conf. Ser.: Mater. Sci. Eng., 167. , 012073",
                "Takeoka, Y., Angle-independent structural coloured amorphous arrays (2012) J. Mater. Chem., 22, pp. 23299-23309"
            ]
        },
        {
            "id": 27,
            "title": "Synthesis and temperature-responsive behavior of nvinylcaprolactam- grafted nr",
            "abstract": "Temperature-responsive polymers are smart materials that respond to changes in temperature, making them suitable for a range of applications. We report the synthesis and temperature-responsive behavior of N-vinylcaprolactam-grafted natural rubber. The grafting reaction was carried out using deproteinized natural rubber (DPNR) latex, with 2,20-azoisobutyronitrile (AIBN) as the free radical initiator. The temperature responsiveness of the graft copolymers was investigated using water swelling and contact angle measurement and compared with that of pure DPNR. The graft copolymer was found to be temperature responsive in the range 32-34 8C, whereas the DPNR was not responsive to temperature. Since the temperature responsiveness of graft copolymer is near the human body temperature, it can be used to fabricate biomedical and sensing materials. Dye adsorption studies revealed the Langmuir isotherm, indicating monolayer coverage. The novel temperatureresponsive natural rubber demonstrated in this study has potential uses in a wide range of applications. © 2018 Rubber Division of the American Chemical Society. All rights reserved.",
            "published_year": 2018,
            "file": null,
            "authors": [
                "Sansuk C.",
                "Phetrong S.",
                "Paoprasert P."
            ],
            "keywords": [],
            "references": [
                "Kookarinrat, C., Paoprasert, P., (2015) Iran. Polym. J, 24, p. 123",
                "Almeida, H., Amaral, M.H., Lobão, P., (2012) J. Appl. Pharma. Sci, 2, p. 1",
                "Selin, K., Zdemir, T.O., Usanmaz, A., (2011) Macr. Sci. A, 48, p. 467",
                "Patel, R., Ahn, S.H., Chi, W.S., Kim, J.H., (2012) Ionics, 18, p. 395",
                "Graves, D.F., (2007) Rubber, \" in Handbook of Industrial Chemistry and Biotechnology, , Kent, J. A. Ed. Springer, New York",
                "Chanroj, T., Paoprasert, P., (2016) RUBBER. CHEM. TECHNOL, 89, p. 251",
                "Zhang, S., Cao, L., Shao, F., Chen, L., Jiao, J., Gao, W., (2008) Polym. Adv. Technol, 19, p. 54",
                "Promdum, Y., Klinpituksa, P., Ruamcharoen, J., (2009) Songklanakarin J. Sci. Technol, 31, p. 453",
                "Suriyachi, P., Kiatkamjornwong, S., Prasassarakich, P., (2004) Rubber Chem. Technol., 77, p. 914",
                "Shi, H., Chen, W., Zhang, L., (2007) Frontiers Chem. Eng. China, 1, p. 72",
                "Adam, G., Sebenik, A., Osredkar, U., Ranogajec, F., Veksli, Z., (1991) Rubber Chem. Technol., 64, p. 133",
                "Liu, R., Fraylich, M., Saunders, B.R., (2009) Colloid Polym. Sci, 287, p. 627",
                "Manaila, E., Stelescu, M.D., Craciun, G., Surdu, L., (2014) Polym. Bull, 71, p. 2001",
                "Ibrahim, M.B., Sani, S., (2014) Open J. Phys. Chem, 4, p. 139",
                "Langmuir, I., (1918) J. Am. Chem. Soc, 40, p. 1361",
                "Yoshida, T., Lai, T.C., Kwon, G.S., Sako, K., (2013) Expert Opin. Drug Deliv, 10, p. 1497",
                "Aguilar, M.R., Elvira, C., Gallardo, A., Vázquez, B., Román, J.S., (2013) Topics Tissue Eng",
                "Temkin, M.I., (1940) J. Phys. Chem, 14, p. 1153. , Moscow",
                "Kangwansupamonkon, W., Gilbert, R.G., Kiatkamjornwong, S., (2005) Macromol. Chem. Phys, 206, p. 2450",
                "Kawahara, S., Klinklai, W., Kuroda, H., Isono, Y., (2004) Polym. Adv. Technol, 15, p. 181",
                "Rao, K.M., Mallikarjuna, B., Rao, K.S.V.K., Siraj, S., Rao, K.C., Subha, M.C.S., (2013) Colloids Surf. B, 102, p. 891",
                "Prabaharan, M., Grailer, J.J., Steeber, D.A., Gong, S., (2008) Macromol. Biosci, 8, p. 843",
                "Webster, M., Miao, J., Lynch, B., Green, D., Jones-Sawyer, R., Linhardt, R.J., Mendenhall, J., (2013) Macro. Mater. Eng, 298, p. 447",
                "Park, Y.I., Zhang, B., Kuo, C.-Y., Martinez, J.S., Park, J., Mallapragada, S., Wang, H.-L., (2013) J. Phys. Chem. C, 117, p. 7757",
                "Xia, X., Hu, Z., (2004) Langmuir, 20, p. 2094",
                "Jain, M., Garg, V.K., Kadirvelu, K., (2009) J. Hazard. Mater, 162, p. 365",
                "Kudryavtsev, V.N., Kabanov, V.Y., Yanul, N.A., Kedik, S.A., (2003) High Energy Chem, 37, p. 382",
                "Brandrup, J., Immergut, E.H., Grulke, E.A., (1999) Polymer Handbook, 2. , 4th ed., John Wiley, New York",
                "Jiang, X., Lu, G., Feng, C., Li, Y., Huang, X., (2013) Polym. Chem, 4, p. 3876",
                "Ward, M.A., Georgiou, T.K., (2011) Polymers, 3, p. 1215",
                "Kavitha, T., Kang, I.-K., Park, S.-Y., (2014) Colloids Surfaces B: Biointerfaces, 115, p. 37",
                "Ho, Y.S., McKay, G., (1998) Chem. Eng. J, 70, p. 115",
                "Kavitha, T., Kang, I.-K., Park, S.-Y., (2014) Colloids Surf. B, 115, p. 37",
                "Satraphan, P., Intasiri, A., Tangpasuthadol, V., Kiatkamjornwong, S., (2009) Polym. Adv. Technol, 20, p. 473",
                "Zadrazil, A., Stepánek, F., (2010) Colloids Surf. A, 372, p. 115",
                "Itodo, A.U., Itodo, H.U., (2010) Life Sci. J, 7, p. 31",
                "Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O., (2012) IOSR J. Appl. Chem, 3, p. 38",
                "Amnuaypanich, S., Ratpolsan, P., (2009) J. Appl. Polym. Sci, 113, p. 3313",
                "Fukuhara, L., Kado, N., Thuong, N.T., Loykulant, S., Suchiva, K., Kosugi, K., Yamamoto, Y., Kawahara, S., (2015) Rubber Chem. Technol., 88, p. 117",
                "Hameed, B.H., Mahmoud, D.K., Ahmad, A.L., (2008) J. Hazard Mater, 158, p. 65",
                "Hebeish, A., Farag, S., Sharaf, S., Shaheen, T.I., (2014) Carbohydrate Polym, 102, p. 159",
                "Halimatuddahliana, Ismaila, H., Akil, H.M., (2005) Int. J. Polym. Mater, 54, p. 1169",
                "Gamlin, C., Markovic, M.G., Dutta, N.K., Choudhury, N.R., Matisons, J.G., (2000) J. Therm. Anal. Calorimetry, 59, p. 319",
                "Oliveira, P.C., Guimaraes, A., Cavaille, J.Y., Chazeau, L., Gilbert, R.G., (2005) Polymer, 46, p. 1105",
                "Fukuhara, L., Miyano, K., Yamamoto, Y., Ishii, H., Kawahara, S., (2015) Kobunshi Ronbunshu, 72, p. 1",
                "Arayapranee, W., Rempel, G.L., (2008) J. Appl. Polym. Sci, 109, p. 1395",
                "Cai, Y., Shen, W., Loo, S.L., Krantz, W.B., Wang, R., Fane, A.G., Hua, X., (2013) Water Res, 47, p. 3773",
                "Liu, H., Chuai, C., Iqbal, M., Wang, H., Kalsoom, B.B., Khattak, M., Khattak, M.Q., (2011) J. Appl. Polym. Sci, 122, p. 973",
                "Wongthep, W., Srituileong, S., Martwiset, S., Amnuaypanich, S., (2013) J. Appl. Polym. Sci, 127, p. 104",
                "Nguyen, C., Do, D.D., (2001) Carbon, 39, p. 1327",
                "Nuntahirun, P., Yamamoto, O., Paoprasert, P., (2016) Macr. Res, 24, p. 816",
                "Chen, J.-K., Chang, C.-J., (2014) Materials, 7, p. 805",
                "Nakason, C., Kaesaman, A., Yimwan, N., (2003) J. Appl. Polym. Sci, 87, p. 68",
                "Yi, G., Huang, Y., Xiong, F., Liao, B., Yang, J., Chen, X., (2011) J. Wuhan Univ. Technol.-Mater. Sci. Ed, 26, p. 1073",
                "Suksawad, P., Yamamoto, Y., Kawahara, S., (2011) Eur. Polym. J, 47, p. 330",
                "Kochthongrasamee, T., Prasassarakich, P., Kiatkamjornwong, S., (2006) J. Appl. Polym. Sci, 101, p. 2587",
                "Van Durme, K., Verbrugghe, S., Du Prez, F.E., Van Mele, B., (2004) Macromolecules, 37, p. 1054",
                "Tamboli, S.M., Mhaske, S.T., Kale, D.D., (2011) J. Appl. Polym. Sci, 122, p. 973",
                "Nakason, C., Kaesaman, A., Supasanthitikul, P., (2004) Polym. Testing, 23, p. 35",
                "Bruns, N., Bannwarth, W., Tiller, J.C., (2008) Biotech. Bioeng, 101, p. 19",
                "Pukkate, N., Kitai, T., Yamamoto, Y., Kawazura, T., Sakdapipanich, J., Kawahara, S., (2007) Eur. Polym. J, 43, p. 3208",
                "Pukkate, N., Yamamoto, Y., Kawahara, S., (2008) Colloid Polym. Sci, 286, p. 411",
                "Li, D., Zhang, X., Yao, J., Simon, G.P., Wang, H., (2011) Chem. Commun, 47, p. 1710",
                "Chen, X., (2015) Information, 4, p. 14",
                "Hanko, M., Bruns, N., Tiller, J.C., Heinze, J., (2006) Anal. Bioanal. Chem, 386, p. 1273",
                "Wongthong, P., Nakason, C., Pan, Q., Rempel, G.L., Kiatkamjornwong, S., (2013) Eur. Polym. J, 49, p. 4035",
                "Juntuek, P., Ruksakulpiwat, C., Chumsamrong, P., Ruksakulpiwat, Y., (2011) J. Appl. Polym. Sci, 122, p. 3152",
                "Crespy, D., Golosova, A., Makhaeva, E., Khokhlov, A.R., Fortunato, G., Rossi, R., (2009) Polym. Int, 58, p. 1326",
                "Tobis, J., Boch, L., Thomann, Y., Tiller, J.C., (2011) J. Membr. Sci., 372, p. 219",
                "Freundlich, H., (1910) Z. Chem. Ind. Kolloide, 7, p. 193",
                "Gupta, T.B.Y.N., Chandra, M., Sharma, R.B., Setua, D.K., (2017) Rubber Chem. Technol., 90, p. 159"
            ]
        }
    ]
}